Entdecke Veranstaltungen in Regensburg Alle Kultur Oekologie Soziales Kino

Unterstützen Sie unabhängigen Journalismus für Regensburg!

Hallo. Schön, dass Sie hier lesen oder kommentieren. Fast noch mehr freuen würden wir uns, wenn Sie die Arbeit von regensburg-digital mit einem kleinen (gern auch größerem) Beitrag unterstützen. Wir finanzieren uns nämlich nur zu etwa einem Drittel über Werbeanzeigen. Und für die gibt es bei uns auch ausdrücklich keine zusätzliche Gegenleistung, etwa in Form von PR-Artikeln oder Native Advertising.

Mehr als zwei Drittel unseres Budgets stammt aus Spenden – regelmäßige Beiträge von etwa 300 Mitgliedern im Verein zur Förderung der Meinungs- und Informationsvielfalt e.V.

Anders ausgedrückt: Wir bauen auf Sie – mündige Leserinnen und Leser, die uns freiwillig unterstützen. Seien Sie dabei – mit einem einmaligen oder regelmäßigen Beitrag. Herzlichen Dank.

Spenden Sie mit

Kunststoffe machen das Licht an

Eine OLED besteht aus Abermilliarden von Molekülen, die unterschiedliche Formen haben und sich auf vielseitige Weise anordnen können. Mittels der Einzelmolekülspektroskopie lassen sich individuelle Moleküle als Punkte im Mikroskopbild (rechts) isolieren und untersuchen. Foto: Universität Regensburg

Zusammenhang von Licht und Materie auf Molekülebene im Blick: Neues Regensburger Projekt wird mit 1,5 Millionen Euro durch den Europäischen Forschungsrat gefördert Sie stellen den zentralen Baustein für Solarzellen oder für organische Leuchtdioden (OLEDs) dar: Polymere. Das sind kettenförmige Makromoleküle, die aus kleinen Untereinheiten (Chromophoren) bestehen, welche wiederum Licht abstrahlen, wenn man elektrischen Strom hindurchleitet. Aufgrund ihrer Größe und Struktur besitzen Polymere Eigenschaften eines Halbleiters. Im Gegensatz zu herkömmlichen Halbleitern wie Silizium, Galliumarsenid oder Cadmiumsulfid haben die Kunststoffe den Vorteil, dass sie relativ simpel, nachhaltig und umweltschonend hergestellt werden können und flexibel einsetzbar sind. Wie sich die molekularen Bausteine zu einem organischen Festkörper zusammenfügen, was dabei in den Makromolekülen im Detail vor sich geht und wie ihre physikalischen Eigenschaften – etwa die Lichtemission – mit der chemischen Struktur zusammenhängt, ist allerdings noch nicht vollständig geklärt. Regensburger Forscher wollen im Rahmen eines neuen Forschungsprojekts den Zusammenhang zwischen molekularem Aufbau und optischen Eigenschaften der Polymere aufklären. Die Physiker hoffen, mit ihren Untersuchungen langfristig die Eigenschaften unterschiedlicher Polymere vorhersagen und – darauf aufbauend – gezielt neue Makromoleküle mit vordefinierten optoelektronischen Eigenschaften entwickeln zu können. Das Projekt mit dem Titel „MolMesON – Molecular Mesoscopics for Organic Nano-Optoelectronics” wird ab Dezember 2012 über fünf Jahre mit knapp 1,5 Millionen Euro durch einen Starting Grant des Europäischen Forschungsrats (European Research Council – ERC) gefördert. Koordiniert wird es durch Prof. Dr. John Lupton vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg. Für Ihre Untersuchungen nutzen die Forscher ein besonderes Verfahren, bei dem die Eigenschaften einzelner Moleküle analysiert werden können. Mit Hilfe der Einzelmolekül-Fluoreszenzmikroskopie können sie die Moleküle lokalisieren und ihre jeweilige Lichtemission bestimmen. Doch nicht jedes Molekül gleicht dem anderen. Während die Lichtemission des Festkörpers, der aus Abermilliarden von Molekülen besteht, einen Großteil des sichtbaren Spektralbereichs mit grünen, gelben und roten Komponenten ausfüllt, lässt sich ein einzelnes Molekül einer einzigen Emissionsfarbe – zum Beispiel „Gelb“ – zuordnen. Daraus kann man schließen, dass ein Festkörper aus grünen, gelben und roten Molekülen besteht, die sich in ihrer Form und ihrer Funktion voneinander unterscheiden. Je nachdem, welche Anwendung in der organischen Elektronik angestrebt wird, müssen Moleküle also entsprechend ihrer Form ausgewählt werden. Für eine Weißlichtquelle, die die klassische Tischlampe ersetzen soll, wäre es wünschenswert, möglichst viele Spektralkomponenten in einem Material abzudecken: Man würde also eine Substanz wählen, die möglichst „ungeordnet“ erscheint. In einem solchen Stoff könnte man die einzelnen Molekülstränge auch mit gekochten Spaghetti vergleichen, bei denen alle möglichen Längen, Verbiegungen und Orientierungen existieren. Für eine OLED-Displayanwendung in einem Mobiltelefon, bei der einzelne Farbpixel individuell angesprochen werden sollen, wäre es dagegen wünschenswert, möglichst „saubere“ Farben zu generieren. In einem solchen Fall empfehlen sich Moleküle, die sich eher wie ungekochte Spaghetti verhalten, bei denen alle Stränge die gleiche Form und Länge aufweisen. Mittels der Einzelmolekülfluoreszenz lässt sich die Form des Moleküls direkt mit seiner chemischen Struktur sowie mit seinen elektronischen Eigenschaften in Verbindung bringen. Über diesen grundlegenden Zusammenhang können durch die Zusammenarbeit von Chemikern und Physikern Materialien für eine bestimmte Anwendung optimiert werden.
Print Friendly, PDF & Email

SUPPORT

Ist dir unabhängiger Journalismus etwas wert?

Dann unterstütze unsere Arbeit!
Einmalig oder mit einer regelmäßigen Spende!

Per PayPal:
Per Überweisung oder Dauerauftrag:

 

Verein zur Förderung der Meinungs- und Informationsvielfalt e.V.
IBAN: DE14 7509 0000 0000 0633 63
BIC: GENODEF1R01

drin